R/scan_multi_onechr.R
scan_multi_onechr.Rd
`scan_multi_onechr` calculates log likelihood for d-variate phenotype model fits. Inputted parameter `start_snp` indicates where in the `probs` object to start the scan.
scan_multi_onechr( probs, pheno, kinship = NULL, addcovar = NULL, start_snp = 1, n_snp = dim(probs)[3], max_iter = 10000, max_prec = 1/1e+08, cores = 1 )
probs | an array of founder allele probabilities for a single chromosome |
---|---|
pheno | a matrix of phenotypes |
kinship | a kinship matrix for one chromosome |
addcovar | a matrix, n subjects by c additive covariates |
start_snp | index of where to start the scan within probs |
n_snp | the number of (consecutive) markers to include in the scan |
max_iter | maximum number of iterations for EM algorithm |
max_prec | stepwise precision for EM algorithm. EM stops once incremental difference in log likelihood is less than max_prec |
cores | number of cores for parallelization |
a tibble with d + 1 columns. First d columns indicate the genetic data (by listing the marker ids) used in the design matrix; last is log10 likelihood
Knott SA, Haley CS (2000) Multitrait least squares for quantitative trait loci detection. Genetics 156: 899–911.
Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140: 1111-1127.
Zhou X, Stephens M (2014) Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nature methods 11:407-409.
Broman KW, Gatti DM, Simecek P, Furlotte NA, Prins P, Sen S, Yandell BS, Churchill GA (2019) R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multi-parent populations. GENETICS https://www.genetics.org/content/211/2/495.
# read data n <- 50 pheno <- matrix(rnorm(2 * n), ncol = 2) rownames(pheno) <- paste0("s", 1:n) colnames(pheno) <- paste0("tr", 1:2) probs <- array(dim = c(n, 2, 5)) probs[ , 1, ] <- rbinom(n * 5, size = 1, prob = 0.2) probs[ , 2, ] <- 1 - probs[ , 1, ] rownames(probs) <- paste0("s", 1:n) colnames(probs) <- LETTERS[1:2] dimnames(probs)[[3]] <- paste0("m", 1:5) scan_multi_onechr(probs = probs, pheno = pheno, kinship = NULL, cores = 1)#> # A tibble: 5 x 3 #> Var1 Var2 log10lik #> <chr> <chr> <dbl> #> 1 m1 m1 -60.4 #> 2 m2 m2 -60.2 #> 3 m3 m3 -60.4 #> 4 m4 m4 -60.0 #> 5 m5 m5 -60.5